Densities, Apparent Molar Volumes, and Apparent Molar Heat Capacities of *I*-Arginine, *I*-Proline and *d*,*I*-Methionine in Water at 288.15, 298.15, 313.15, and 328.15 K

Andrew W. Hakin,* Alyson K. Copeland, Jin Lian Liu, Robert A. Marriott, and Kathryn E. Preuss

Department of Chemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada

Relative densities, $(\rho - \rho_1^\circ)$, and heat capacity ratios, $c_p \rho / c_{p1}^\circ \rho_1^\circ - 1$, for *l*-arginine, *l*-proline, and *d*,*l*-methionine in water have been measured at 288.15, 298.15, 313.15 and 328.15 K. These data have been used to calculate apparent molar volumes and apparent molar heat capacities. Calculated standard state volumes and heat capacities have been compared to available literature data. Standard state expansibilities have been calculated from the temperature dependences of standard state volume data.

Introduction

The volumetric and thermochemical properties of aqueous amino acid systems have been studied by several authors. Although there is a wide selection of volumetric data as a function of temperature at ambient pressure, heat capacity data at temperatures removed from the standard condition of 298.15 K are extremely limited. Our most recent work has focused on the collection of volumetric and thermochemical data for aqueous amino acid systems as a function of temperature at ambient pressure (Hakin et al., 1994a,b 1995; Duke et al., 1994). These data have been utilized in the construction of group additivity schemes which are based on the standard state property, semiempirical modeling procedures described by Helgeson et al. (1981). Once a complete data base of thermodynamic data for the amino acid systems has been collected, it is our intention to apply our group additivity analyses to the prediction of thermodynamic properties of structurally more complicated peptide, and perhaps protein, systems.

To expand our data base of volumetric and thermochemical data for aqueous amino acid systems, this paper reports relative densities, $(\rho - \rho_1^\circ)$, and heat capacity ratios, $c_p\rho/c_{\rho1}^\circ\rho_1^\circ - 1$, for *l*-arginine, *l*-proline, and *d*,*l*-methionine in water at 288.15, 298.15, 313.15, and 328.15 K.

Experimental Section

I-Arginine, *I*-proline, and *d*,*I*-methionine were obtained from Sigma Chemical Co. (catalog numbers A 5006, P 0380, and M 9500, respectively). These compounds were recrystallized several times from ethanol + water mixtures, and their purities were checked by comparing their NMR spectra (obtained using a 250 MHz Brüker Instrument) to those contained in the literature (Pouchert and Campbell, 1974). In addition, the purity of each recrystallized amino acid was confirmed by elemental analyses (Galbraith Laboratories, Knoxville, TN). *d*,*l*-Methionine found: C, 40.43; H, 7.62; N, 9.40; S, 21.60. Cf. Calcd: C, 40.25; H, 7.43; N, 9.39; S, 21.49. *I*-Proline found: C, 52.50; H, 8.00; N, 12.17. Cf. Calcd: C, 52.16; H, 7.88; N, 12.17. l-Arginine found: C, 41.00; H, 8.38; N, 31.76. Cf. Calcd: C, 41.37; H, 8.1; N, 32.16. The purified anhydrous compounds were dried and stored in a vacuum oven over silica gel at 323.15 K. Water used in these investigations was obtained from an Osmonics model Aries High-purity D.I. Loop that can polish water to a resistance of 18.3 M Ω . All solutions were made by mass on the molality concentration scale and were stored in an unbuffered state in sealable 100 mL Nalgene bottles. Uncertainties in solution concentrations were assumed to be negligible in all of our calculations.

Density measurements were made with a Sodev Inc. O2D vibrating tube densimeter that was calibrated at each investigated temperature using a stream of high-purity N_2 gas and water. All densities were measured relative to water. Relative densities were calculated using the equation

$$(\rho - \rho_1^{\circ}) = K(\tau^2 - \tau_1^{2}) \tag{1}$$

In this equation *K* defines the temperature dependent calibration constant of the densitometer, τ_1^2 and τ^2 are the squares of the time periods of oscillation of the vibrating tube containing pure water and solution, respectively, ρ_1° is the density of pure water (Kell, 1967), and ρ is the density of the solution. The uncertainty in the density, $\delta\rho$, is assigned a value of (5 × 10⁻⁶) g cm⁻³.

Heat capacity measurements for the amino acid solutions were made relative to pure water using a Picker flow microcalorimeter. Output from this instrument is in the form of a voltage signal recorded from a HP-3456A digital voltmeter. An IBM computer interfaced to the voltmeter facilitates the automatic (time stamped) collection of data. Heat capacity ratios were calculated from voltage versus time plots using a commercial data visualization program. The specific heat capacities for pure water, c_{p1} , which are required in the calculation of amino acid specific heat capacities, were taken from the compilations of Kell (1972). The uncertainty in a measured specific heat capacity, δc_{p} , is estimated to be (7 \times 10⁻⁵) J K⁻¹ g⁻¹. The heat loss correction factor, or *f* factor, associated with our calorimeter was determined prior to the start of our investigations using standard solutions of sodium chloride in water (Desnoyers *et al.*, 1976). A value of f = 0.9967 has been used in our calorimetric calculations at all temperatures.

The densimeter and the calorimeter were thermostated using Sodev Inc. programmable circulating thermostat units which have a working range of 273.15 K to 348.15 K and a thermal stability of ± 0.001 K.

^{*} Tel. (403) 329-2083. Fax (403) 329-2057.

Table 1. Relative Densities, $(\rho - \rho_i)$, Apparent Molar Volumes, $V_{2,\theta}$, Heat Capacity Ratios, $[c_p\rho/c_p_i)\rho_i^2 - 1]$, and Apparent Molar Heat Capacities, $C_{p2,\theta}$, of Aqueous Solutions of *I*-Arginine at (288.15, 298.15, 313.15, and 328.15) K^a

Molar Heat Capaciti	ies, $C_{p2,g}$, of Aqueous Solu	tions of <i>I</i> -Arginine at (2)	88.15, 298.15, 313.15, and 32	28.15) K ^a
m/mol kg ⁻¹	$(ho- ho_1^\circ)/~{ m g~cm^{-3}}$	$V_{2, \emptyset}/cm^3 \ mol^{-1}$	$10^3 (c_p \rho / c_p _1^{\circ} \rho _1^{\circ} - 1)$	$C_{p2,o}/J \mathrm{K}^{-1} \mathrm{mol}^{-1}$
		T = 288.15 K		
0.289 4	$1.4151 imes 10^{-2}$	123.62(0.02)	-17.932	265.7(0.3)
0.197 4	$9.954 imes10^{-3}$	122.62(0.03)	-12.018	253.6(0.4)
0.142 0	$7.122 imes10^{-3}$	123.25(0.04)	-8.546	260.1(0.5)
0.081 06	$4.098 imes 10^{-3}$	123.20(0.06)	-4.985	256.1(0.9)
0.05826	$2.967 imes10^{-3}$	122.98(0.09)	-3.579	256.7(1.2)
0.029 59	$7.219 imes10^{-3}$	122.34(0.17)	-1.821	243.5(2.4)
0.030 18	$1.607 imes10^{-3}$	120.85(0.17)	-1.936	236.9(2.3)
		T = 298.15 K		
0.289 4	$1.3862 imes 10^{-2}$	124.81(0.02)	-15.325	290.8(0.3)
0.197 4	$9.579 imes10^{-3}$	124.71(0.03)	-10.599	289.8(0.4)
0.142 0	$6.968 imes10^{-3}$	124.51(0.04)	-7.816	284.8(0.5)
0.081 06	$4.012 imes10^{-3}$	124.44(0.06)	-4.515	283.3(0.9)
0.058 26	$2.902 imes10^{-3}$	124.26(0.09)	-3.285	280.4(1.2)
0.029 59	$1.487 imes 10^{-3}$	124.01(0.17)	-1.672	279.7(2.4)
0.030 18	$1.581 imes 10^{-3}$	121.88(0.17)	-1.780	260.5(2.3)
		T = 313.15 K		
0.289 4	$1.3573 imes 10^{-2}$	126.20(0.02)	-13.858	316.6(0.3)
0.197 4	$9.369 imes10^{-3}$	126.17(0.03)	-9.2895	322.2(0.4)
0.142 0	$6.821 imes10^{-3}$	125.92(0.04)	-6.873	317.0(0.5)
0.081 06	$3.937 imes10^{-3}$	125.74(0.06)	-3.990	314.2(0.9)
0.058 26	$2.846 imes10^{-3}$	125.59(0.09)	-2.867	314.2(1.2)
0.029 59	$1.462 imes10^{-3}$	125.21(0.17)	-1.467	311.9(2.4)
0.030 18	$1.549 imes10^{-3}$	123.25(0.17)	-1.572	293.3(2.3)
		T = 328.15 K		
0.289 4	$1.3446 imes 10^{-2}$	127.18(0.02)	-11.614	350.9(0.3)
0.197 4	$9.293 imes10^{-3}$	127.08(0.03)	-8.238	345.6(0.4)
0.142 0	$6.756 imes10^{-3}$	126.90(0.04)	-6.199	338.0(0.5)
0.081 06	$3.895 imes10^{-3}$	126.77(0.06)	-3.306	350.8(0.9)
0.058 26	$2.824 imes10^{-3}$	126.47(0.09)	-2.579	335.5(1.2)
0.029 59	$1.448 imes10^{-3}$	126.19(0.17)	-1.008	369.3(2.4)
0.030 18	$1.506 imes10^{-3}$	125.19(0.17)	-1.367	326.6(2.3)

^a Uncertainties are shown in parentheses.

Results and Discussion

Apparent molar volumes, $V_{2,0}$, were calculated from relative densities using the equation

$$V_{2,o} = \left(\frac{M}{\rho}\right) - \left(\frac{\rho - \rho_1^\circ}{m\rho\rho_1^\circ}\right)$$
(2)

where *m* is the molality of the investigated solution and *M* is the molar mass of the solute. In a similar fashion, apparent molar heat capacities, $C_{p2,g}$, were calculated from measured heat capacity ratios using the relationship

$$C_{p2,\emptyset} = Mc_p + (c_p - c_{p1})/m$$
 (3)

where c_p is the specific heat capacity of the solute. Apparent molar volumes, heat capacities, relative densities, heat capacity ratios, and concentration data for the investigated amino acid systems are reported in Tables 1–3 at each temperature.

Standard state volumes and heat capacities were determined from the concentration dependences of the relevant apparent molar properties. For the dilute concentration ranges investigated in the present study, the reported apparent molar data were found to be adequately modelled by equations of the form

$$Y_{2,\emptyset} = Y_{2,\emptyset}^{\infty} + A_{Y}m \tag{4}$$

In this equation Y represents the extensive thermodynamic property of interest, $Y_{2,o}$ defines an apparent molar property, $Y_{2,o}^{\circ}$ defines the value of the apparent molar property at infinite dilution, and A_Y is a constant obtained from the fit of the equation to the thermodynamic data. Partial molar properties, Y_2 , may be related to apparent molar properties using the equation

$$Y_2 = Y_{2,\theta} + n_2 \left(\frac{\partial Y_{2,\theta}}{\partial n_2}\right)_{T,p,n_1}$$
(5)

where n_1 and n_2 define the number of moles of solvent and solute, respectively. In the limit $n_2 \rightarrow 0$ the standard state property Y_2° is equal to the apparent molar property at infinite dilution, $Y_{2,o}^{\circ}$.

Standard state volumes and heat capacities were obtained by fitting the appropriate version of eq 4 to apparent molar volume and heat capacity data using a weighted regression analysis procedure. A weighted procedure is required because all of our measurements are performed relative to water. As our investigated solutions become more waterlike, the signal to noise ratio of our time period and voltage readings decreases. In other words, relative densities and heat capacity ratios can be measured with less precision for dilute solutions than for more concentrated solutions. To reflect this situation in our data analyses, we use a weighting factor of one over the square of the uncertainty in the apparent molar property of interest. Uncertainties in apparent molar volumes and heat capacities have been defined by eqs 6 and 7, respectively.

$$\delta V_{2,\sigma} = -\left[M + \frac{1000}{m}\right] \frac{\delta \rho}{\rho^2} \tag{6}$$

$$\delta C_{p2,g} = \left(M + \frac{1000}{m} \right) \delta c_p \tag{7}$$

Calculated uncertainties have been included in parentheses

Table 2. Relative Densities, $(\rho - \rho_1)$, Apparent Molar Volumes, $V_{2,o}$, Heat Capacity Ratios, $[c_p\rho/c_p_1\rho_1 - 1]$, and Apparent Molar Heat Capacities, $C_{p2,o}$, of Aqueous Solutions of *l*-Proline at (288.15, 298.15, 313.15, and 328.15) K^a

Molar Heat Capacities, $C_{p2,6}$, of Aqueous Solutions of <i>I</i> -Provine at (288.15, 298.15, 313.15, and 328.15) K ⁴									
	$(ho - ho_1^\circ)/$	$V_{2,o}$	10 ³	$C_{p2,\theta}$		$(ho - ho_1^\circ)/$	$V_{2,\varrho}$	10 ³	$C_{p2,\varrho}$
$m/mol kg^{-1}$	$g \text{ cm}^{-3}$	cm ³ mol ⁻¹	$(c_p \rho / c_{p1} \circ \rho_1 - 1)$	J K ⁻¹ mol ⁻¹	<i>m</i> /mol kg ⁻¹	g cm ⁻³	cm ³ mol ⁻¹	$(c_p \rho / c_p \rho_1 - 1)$	J K ⁻¹ mol ⁻¹
0	0		· F F F · · · · ·		38.15 K	0			
0.005 212	$1.74 imes10^{-4}$	81.72(0.96)	-0.213	1 - 20 171.2(13.4)	0.101 3	$3.354 imes10^{-3}$	81.76(0.05)	-4.357	160.9(0.7)
0.007 473	1.74×10 2.51×10^{-4}	81.52(0.67)	-0.335	153.7(9.4)	0.203 3	6.662×10^{-3}	81.83(0.02)	-4.337 -8.642	160.9(0.7) 161.9(0.4)
0.009 422	3.21×10^{-4}	81.06(0.53)	-0.418	154.0(7.4)	0.333 4	1.0812×10^{-2}	81.83(0.02)	-14.048	161.6(0.2)
0.012 26	$4.07 imes 10^{-4}$	81.91(0.40)	-0.456	152.0(5.7)	0.582 5	1.8437×10^{-2}	81.98(0.01)	-24.066	162.3(0.1)
0.017 59	$5.89 imes 10^{-4}$	81.64(0.28)	-0.743	165.0(4.0)	0.697 9	2.1875×10^{-2}	82.01(0.01)	-28.622	162.1(0.1)
0.021 01	$6.97 imes 10^{-4}$	81.90(0.23)	-0.871	169.1(3.3)	0.104 1	$3.455 imes 10^{-3}$	81.69(0.05)	-4.499	159.7(0.7)
0.022 91	7.76×10^{-4}	81.19(0.21)	-0.954	165.4(3.1)	0.077 59	2.577×10^{-3}	81.75(0.06)	-3.354	160.4(0.9)
0.030 36	1.009×10^{-3}	81.83(0.17)	-1.268	167.5(2.3)	0.062 03	2.062×10^{-3}	81.77(0.08)	-2.673	161.2(1.1)
0.050 90	1.701×10^{-3}	81.58(0.10)	-2.168	162.7(1.4)	0.050 83	1.690×10^{-3}	81.79(0.10)	-2.170	163.2(1.4)
0.060 30	$2.003 imes10^{-3}$	81.77(0.08)	-2.574	163.0(1.2)	0.041 00	$1.364 imes 10^{-3}$	81.78(0.12)	-1.784	159.9(1.7)
0.071 82	$2.384 imes10^{-3}$	81.76(0.07)	-3.094	161.1(1.0)	0.027 30	$9.06 imes 10^{-4}$	81.91(0.18)	-1.188	160.5(2.6)
0.082 75	$2.740 imes10^{-3}$	81.81(0.06)	-3.562	161.3(0.9)	0.017 94	$5.95 imes10^{-4}$	81.96(0.28)	-0.766	164.3(3.9)
0.092 82	$3.081 imes 10^{-3}$	81.69(0.05)	-3.992	160.9(0.8)	0.010 44	$3.46 imes10^{-4}$	81.97(0.50)	-0.452	162.2(6.7)
				T = 20	98.15 K				
0.005 212	$1.70 imes 10^{-4}$	82.64(0.97)	-0.205	1 - 2.3 180.1(13.4)	0.101 3	$3.278 imes 10^{-3}$	82.61(0.05)	-4.004	178.1(0.7)
0.007 473	$2.44 imes 10^{-4}$	82.52(0.67)	-0.317	166.8(9.4)	0.203 3	6.510×10^{-3}	82.69(0.02)	-8.034	177.2(0.4)
0.009 422	$3.07 imes10^{-4}$	82.66(0.53)	-0.373	179.5(7.4)	0.333 4	$1.0544 imes 10^{-2}$	82.75(0.02)	-12.955	178.5(0.2)
0.012 26	4.04×10^{-4}	82.24(0.41)	-0.495	174.4(5.7)	0.582 5	1.8012×10^{-2}		-22.329	177.8(0.1)
0.014 64	4.84×10^{-4}	82.12(0.34)	-0.595	172.7(4.8)	0.697 9	2.1354×10^{-2}	82.89(0.01)	-26.448	178.4(0.1)
0.017 59	5.73×10^{-4}	82.61(0.29)	-0.730	171.1(4.0)	0.104 1	3.372×10^{-3}	82.60(0.05)	-4.155	176.4(0.7)
0.021 01	$6.99 imes 10^{-4}$	81.90(0.24)	-0.855	171.5(3.3)	0.077 59	$2.518 imes 10^{-3}$	82.62(0.07)	-3.068	178.5(0.9)
0.022 91	$7.22 imes 10^{-4}$	83.67(0.22)	-0.909	183.0(3.1)	0.062 03	$2.015 imes 10^{-3}$	82.63(0.08)	-2.453	178.8(1.1)
0.030 36	$9.88 imes 10^{-4}$	82.63(0.17)	-1.220	176.4(2.3)	0.050 83	1.656×10^{-3}	82.57(0.10)	-1.981	181.1(1.4)
0.050 90	$1.653 imes10^{-3}$	82.63(0.10)	-2.058	175.2(1.4)	0.041 00	$1.334 imes 10^{-3}$	82.64(0.12)	-1.555	185.9(1.7)
0.060 30	$1.954 imes10^{-3}$	82.69(0.08)	-2.406	177.5(1.2)	0.027 30	$8.90 imes10^{-4}$	82.61(0.18)	-1.076	179.6(2.6)
0.071 82	$2.324 imes10^{-3}$	82.70(0.07)	-2.864	177.5(1.0)	0.017 94	$5.84 imes 10^{-4}$	82.67(0.28)		
0.082 75	$2.678 imes10^{-3}$	82.66(0.06)	-3.282	178.1(0.9)	0.010 44	$3.38 imes 10^{-4}$	82.84(0.48)		
0.092 82	$3.007 imes10^{-3}$	82.60(0.05)	-3.639	179.6(0.8)					
				T=3	13.15 K				
0.005 212	$1.67 imes 10^{-4}$	83.45(0.97)	-0.194	190.5(13.4)	0.101 3	$3.199 imes10^{-3}$	83.65(0.05)	-3.675	194.4(0.7)
0.007 473	$2.38 imes 10^{-4}$	83.64(0.67)	-0.272	194.9(9.4)	0.203 3	6.352×10^{-3}	83.73(0.03)	-7.172	197.8(0.4)
0.009 422	$3.02 imes 10^{-4}$	83.43(0.54)	-0.350	191.1(7.4)	0.333 4	$1.0299 imes 10^{-2}$	83.76(0.02)	-11.814	195.6(0.2)
0.012 26	$3.95 imes 10^{-4}$	83.26(0.41)			0.582 5	$1.7576 imes 10^{-2}$	83.87(0.01)	-20.338	195.3(0.1)
0.017 59	$5.64 imes10^{-4}$	83.40(0.29)	-0.648	192.2(4.0)	0.697 9	2.0848×10^{-2}	83.90(0.01)	-24.225	194.9(0.1)
0.021 01	$6.70 imes10^{-4}$	83.56(0.24)	-0.763	194.9(3.3)	0.104 1	$3.290 imes 10^{-3}$	83.64(0.05)	-3.682	198.1(0.7)
0.022 91	$7.35 imes10^{-4}$	83.37(0.22)	-0.824	195.5(3.1)	0.07759	$2.456 imes10^{-3}$	83.68(0.07)	-2.732	199.3(0.9)
0.030 36	$9.61 imes10^{-4}$	83.76(0.17)	-1.086	197.8(2.3)	0.062 03	$1.961 imes10^{-3}$	83.76(0.08)	-2.242	196.0(1.1)
0.050 90	$1.616 imes10^{-3}$	83.62(0.10)	-1.842	195.3(1.4)	0.050 83	$1.606 imes 10^{-3}$	83.80(0.10)	-1.838	196.2(1.4)
0.060 30	$1.908 imes10^{-3}$	83.70(0.08)	-2.130	199.1(1.2)	0.041 00	$1.300 imes10^{-3}$	83.73(0.12)	-1.443	200.0(1.7)
0.071 82	$2.274 imes10^{-3}$	83.66(0.07)	-2.549	198.1(1.0)	0.027 30	$8.62 imes10^{-4}$	83.89(0.19)	-0.946	203.1(2.6)
0.082 75	$2.617 imes10^{-3}$	83.66(0.06)	-2.964	196.6(0.9)	0.017 94	$5.67 imes10^{-4}$	83.87(0.28)	-0.612	205.3(3.9)
0.092 82	$2.939 imes10^{-3}$	83.59(0.05)	-3.248	199.7(0.8)	0.010 44	$3.31 imes10^{-4}$	83.78(0.49)	-0.356	205.3(6.7)
				T=32	28.15 K				
0.050 90	$1.597 imes10^{-3}$	84.34(0.10)	-2.030	180.7(1.4)	0.082 75	$2.573 imes10^{-3}$	84.55(0.06)	-2.084	242.8(0.9)
0.060 30	$1.876 imes10^{-3}$	84.59(0.09)	-1.822	222.1(1.2)	0.092 82	$2.882 imes 10^{-3}$	84.56(0.06)	-2.936	215.7(0.8)
0.071 82	$2.237 imes10^{-3}$	84.53(0.07)		. ,	0.101 3	$3.150 imes 10^{-3}$	84.49(0.05)	-3.325	210.3(0.7)
0.082 75	$2.578 imes10^{-3}$	84.49(0.06)	-2.473	222.8(0.9)	0.203 3	$6.250 imes10^{-3}$	84.60(0.03)	-7.110	200.5(0.4)
0.092 82	2.894×10^{-3}	84.43(0.06)	-2.187	249.1(0.8)	0.333 4	1.0145×10^{-2}		-8.572	238.5(0.2)
0.101 3	$3.164 imes10^{-3}$	84.35(0.05)	-1.891	269.2(0.7)	0.582 5	1.7311×10^{-2}	· · ·	-18.612	209.5(0.1)
0.203 3	$6.260 imes10^{-3}$	84.55(0.03)	-6.164	220.0(0.4)	0.697 9	2.0535×10^{-2}	84.72(0.01)	-22.190	209.0(0.1)
0.333 4	$1.0170 imes10^{-2}$		-10.931	207.9(0.2)	0.104 1	$3.249 imes10^{-3}$	84.39(0.05)	-3.107	222.3(0.7)
0.582 5	1.7304×10^{-2}		-19.706	201.3(0.1)	0.062 03	1.946×10^{-3}	84.35(0.08)	-2.114	204.9(1.1)
0.697 9	$2.0573 imes 10^{-2}$		-22.013	209.9(0.1)	0.050 83	1.601×10^{-3}	84.24(0.10)	-1.633	212.8(1.4)
0.050 90	$1.594 imes10^{-3}$	84.41(0.10)	-1.698	208.3(1.4)	0.041 00	$1.288 imes 10^{-3}$	84.36(0.13)	-1.429	201.9(1.7)
0.060 30	1.881×10^{-3}	84.51(0.09)	-1.560	240.0(1.2)	0.027 30	$8.59 imes10^{-4}$	84.36(0.19)	-0.838	219.5(2.6)
0.071 82	$2.230 imes10^{-3}$	84.62(0.07)	-1.458	263.7(1.0)					

^{*a*} Uncertainties are shown in parentheses.

in Tables 1–3. Calculated standard state data are compared to available literature data in Table 4.

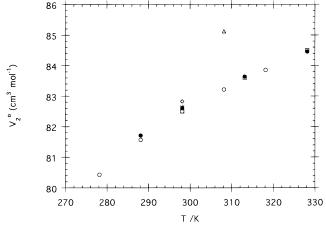
Our review of published standard state volume data for *l*-arginine in water indicates that previous investigations have been limited to two temperatures: 298.15 K and 308.15 K. At 298.15 K our value of (124.12 \pm 0.28) cm³ mol⁻¹ agrees within the stated limits of experimental uncertainty with those values reported by Mishra and Ahluwalia (1984) and Jolicoeur *et al.* (1986). Our data appear to confirm that the earlier value of 127.34 cm³ mol⁻¹ reported by Millero *et al.* (1978) is too high. Iqbal and Ahmed's value of (131.10 \pm 0.05) cm³ mol⁻¹ at 308.15 K

(Iqbal and Ahmed, 1993) does not appear to agree with the temperature trends displayed by our data. Their value is approximately 6 cm³ mol⁻¹ greater than the value that may be estimated from our data set. The very large difference of approximately 7 cm³ mol⁻¹ between their standard state volume at 308.15 K and the value at 298.15 K (where there is a consensus of agreement between several studies) appears to be unlikely. In explaining this difference, we note that Iqbal and Ahmed's density measurements were performed using 20 mL pycnometer flasks which are not capable of the high precision offered by vibrating tube instruments.

Table 3. Relative Densities, $(\rho - \rho \hat{\imath})$, Apparent Molar Volumes, $V_{2,0}$, Heat Capacity Ratios, $[c_{p\rho}/c_{p}\hat{\imath}\rho \hat{\imath} - 1]$, and Apparent Molar Heat Capacities, $C_{p2,0}$, of Aqueous Solutions of d,l-Methionine at (288.15, 298.15, 313.15, and 328.15) K^a

		P.4,07	4.00	<i>a i</i>			· · · · · · · · · · · · · · · · · · ·	4.00	
/ 11 4	$(\rho - \rho_{1}^{\circ})/2$	$V_{2,\varrho}$	103	$C_{p2,\emptyset}/$		$(\rho - \rho_1^{\circ})/2$	$V_{2,\varrho}$	10 ³	$C_{p2,\varrho}$
<i>m</i> /mol kg ⁻¹	g cm ⁻³	$\mathrm{cm}^3 \mathrm{mol}^{-1}$	$(c_p \rho / c_{p1} \circ \rho_1 - 1)$	J K ⁻¹ mol ⁻¹	$m/mol kg^{-1}$	g cm ⁻³	$\mathrm{cm}^3 \mathrm{mol}^{-1}$	$(c_p\rho/c_{p1}^\circ,\rho_1-1)$	J K ⁻¹ mol ⁻¹
				T = 23	88.15 K				
0.043 41	$1.949 imes 10^{-3}$	104.16(0.12)	-1.557	285.3(1.6)	0.049 75	$2.254 imes10^{-3}$	103.73(0.10)	-1.761	285.4(1.4)
0.050 88	2.284×10^{-3}	104.13(0.10)	-1.865	281.7(1.4)	0.045 57	$2.056 imes 10^{-3}$		-1.570	290.2(1.5)
0.054 53	$2.452 imes 10^{-3}$	104.05(0.09)	-1.965	284.0(1.3)	0.049 86	$2.247 imes 10^{-3}$	103.97(0.10)	-1.872	277.4(1.4)
0.061 62	$2.759 imes 10^{-3}$	104.20(0.08)	-2.252	282.3(1.1)	0.054 83	$2.470 imes10^{-3}$	103.96(0.09)	-1.945	285.9(1.3)
0.067 57	$3.026 imes 10^{-3}$	104.16(0.07)	-2.426	284.8(1.0)	0.060 21	$2.708 imes 10^{-3}$	104.00(0.08)	-2.228	279.5(1.2)
0.074 50	$3.341 imes 10^{-3}$	104.08(0.07)	-2.726	281.4(1.0)	0.066 64	$3.001 imes 10^{-3}$	103.92(0.08)	-2.434	281.1(1.1)
0.084 40	$3.775 imes 10^{-3}$	104.14(0.06)	-3.058	283.0(0.8)	0.075 87	$3.413 imes 10^{-3}$	103.92(0.07)	-2.709	284.5(0.9)
0.093 20	$4.168 imes 10^{-3}$	104.14(0.05)	-3.431	280.3(0.8)	0.077 02	$3.459 imes 10^{-3}$	103.99(0.07)	-2.843	279.7(0.9)
0.097 29	4.339×10^{-3}	104.21(0.05)	-3.567	281.3(0.7)	0.0886 0	$3.979 imes 10^{-3}$	103.94(0.06)	-3.200	282.6(0.8)
0.099 50	4.439×10^{-3}	104.19(0.05)	-3.698	279.1(0.7)	0.098 59	$4.412 imes 10^{-3}$	104.06(0.05)	-3.563	282.9(0.7)
				T-9	98.15 K				
0.043 41	$1.908 imes 10^{-3}$	105 24(0 12)	-1.491	294.8(1.6)	0.044 69	$1.969 imes 10^{-3}$	105 11(0 11)	-1.560	291.9(1.6)
0.050 88	2.231×10^{-3}		-1.729	296.5(1.4)	0.051 02	2.237×10^{-3}		-1.745	295.6(1.4)
0.054 53	2.382×10^{-3}		-1.844	297.8(1.3)	0.056 43	2.471×10^{-3}		-1.944	294.6(1.3)
0.061 62	2.689×10^{-3}		-2.088	297.4(1.1)	0.063 72	2.789×10^{-3}	105.33(0.08)	-2.192	294.7(1.1)
0.067 57	2.948×10^{-3}		-2.291	297.1(1.0)	0.067 75	2.963×10^{-3}		-2.312	295.8(1.0)
0.074 50	3.245×10^{-3}	105.49(0.07)	-2.525	297.3(1.0)	0.072 16	3.156×10^{-3}		-2.478	294.7(1.0)
0.084 40	3.677×10^{-3}		-2.876	296.2(0.8)	0.079 97	3.491×10^{-3}		-2.737	295.3(0.9)
0.093 20	4.053×10^{-3}		-3.161	296.9(0.8)	0.083 63	3.651×10^{-3}		-2.836	296.5(0.8)
0.097 29	4.229×10^{-3}		-3.331	295.4(0.7)	0.089 88	3.919×10^{-3}		-3.058	296.0(0.8)
0.099 50	4.325×10^{-3}		-3.376	296.7(0.7)	0.103 2	4.492×10^{-3}		-3.522	295.4(0.7)
				T-3	13.15 K				
0.050 88	$2.156 imes 10^{-3}$	107 11(0 10)	-1.552	316.3(1.4)	0.051 02	$2.167 imes 10^{-3}$	107 00(0 10)	-1.646	308.5(1.4)
0.054 53	2.302×10^{-3}		-1.738	311.1(1.3)	0.056 43	2.397×10^{-3}		-1.790	310.7(1.3)
0.061 62	2.606×10^{-3}		-1.906	314.5(1.1)	0.063 72	2.705×10^{-3}		-2.015	310.9(1.1)
0.067 57	2.852×10^{-3}		-2.172	309.5(1.0)	0.067 72	2.866×10^{-3}		-2.146	311.2(1.0)
0.074 50	3.146×10^{-3}		-2.417	308.0(1.0)	0.072 16	3.054×10^{-3}		-2.328	310.7(1.0)
0.084 40	3.558×10^{-3}		-2.643	312.8(0.8)	0.072 10	3.387×10^{-3}		-2.554	309.4(0.9)
0.097 29	4.099×10^{-3}		-3.064	311.7(0.7)	0.083 63	3.535×10^{-3}		-2.676	309.4(0.8)
0.099 50	4.192×10^{-3}		-3.031	315.9(0.7)	0.089 88	3.798×10^{-3}		-2.854	310.2(0.8)
0.044 69	1.906×10^{-3}		-1.429	309.2(1.6)	0.103 2	4.352×10^{-3}		-3.293	309.5(0.7)
0.01100	1.000 × 10	100.00(0.11)	1.180			1.002 / 10	107.07 (0.00)	0.200	000.0(0.1)
0.054 53	$2.258 imes 10^{-3}$	100 59(0.00)	-1.376	I = 32 341.5(1.3)	28.15 K 0.054 53	2.261×10^{-3}	100 40(0.00)	-1.978	295.0(1.3)
0.054 55 0.061 62	2.258×10^{-3} 2.551×10^{-3}		-1.376 -1.615			2.261×10^{-3} 2.547×10^{-3}		-1.978 -1.845	321.8(1.1)
	2.331×10^{-3} 2.802×10^{-3}		-2.135	337.2(1.1)	0.061 62 0.067 57				358.5(1.0)
0.067 57 0.074 50	2.802×10^{-3} 3.081×10^{-3}		-2.135 -2.642	314.1(1.0)	0.067 57 0.074 50	$\begin{array}{c} 2.790 \times 10^{-3} \\ 3.078 \times 10^{-3} \end{array}$		$-1.432 \\ -2.383$	• • •
0.074 50 0.084 40	3.081×10^{-3} 3.485×10^{-3}		-2.642 -2.682	298.1(1.0)	0.074 50 0.084 40	3.078×10^{-3} 3.480×10^{-3}		-2.383 -2.213	312.9(1.0)
0.084 40 0.093 20	3.485×10^{-3} 3.828×10^{-3}		-2.682 -2.647	313.5(0.8) 328.4(0.8)	0.084 40 0.093 20	3.480×10^{-3} 3.839×10^{-3}		-2.213 -2.704	337.2(0.8) 325.3(0.8)
0.093 20 0.097 29	3.828×10^{-3} 4.007×10^{-3}		-2.647 -3.064		0.093 20	3.839×10^{-3} 4.023×10^{-3}		-2.704 -2.946	
0.097 29 0.099 50	4.007×10^{-3} 4.092×10^{-3}		-3.064 -3.073	314.8(0.7)	0.097 29	4.023×10^{-3} 4.106×10^{-3}		-2.946 -3.020	319.2(0.7)
0.099 50	4.092×10^{-3} 2.106×10^{-3}		-3.073 -1.718	317.5(0.7) 305.9(1.4)	0.099 50	4.100×10^{-6}	108.45(0.05)	-3.020	319.2(0.7)
0.000 88	2.100×10^{-5}	108.34(0.10)	-1./18	303.9(1.4)					

^a Uncertainties are shown in parentheses.


Table 4. Comparison of Calculated V_2 and C_{p^2} Data with Literature Data

<i>T</i> /K	<i>V</i> [°] ₂ /cm ³ mol ⁻¹	$A_V/\mathrm{cm^3~mol^{-2}~kg}$	C_{p2} /J K $^{-1}$ mol $^{-1}$	A_{C_p} /J K ⁻¹ mol ⁻² kg
	<i>l</i> -Aı	rginine		
288.15	122.29 ± 0.51	4.24 ± 2.14	247.2 ± 5.4	60.1 ± 22.4
298.15	$124.12 \pm 0.28~(127.34,^a123.86,^b123.7^c)$	2.48 ± 1.18	$279.5 \pm 3.0~(279^{c})$	40.9 ± 12.3
313.15	125.51 ± 0.30	2.58 ± 1.25	317.3 ± 4.8	2.0 ± 20.1
328.15	126.51 ± 0.19	2.42 ± 0.80	336.3 ± 5.9	$\textbf{48.8} \pm \textbf{24.4}$
	<i>l</i> -P	roline		
288.15	81.71 ± 0.02 (81.57^{d})	0.44 ± 0.03	161.4 ± 0.3	1.2 ± 0.5
298.15	82.61 ± 0.02 (82.50 , d 82.5 , e 82.83 , a 82.63 , b 82.65^{c})	0.40 ± 0.03	$177.9 \pm 0.4 \; (172.3, {}^c \; 170.3 {}^f)$	0.5 ± 0.7
313.15	$83.64 \pm 0.01 \; (83.6^{e})$	0.38 ± 0.02	197.6 ± 0.4	-4.0 ± 0.7
328.15	$84.46 \pm 0.03 \; (84.5^{e})$	0.37 ± 0.05	226.5 ± 6.7	-27.9 ± 11.0
	<i>d,1</i> -Me	ethionine		
288.15	$103.8 \pm 0.11 \; (103.89^e, 104.0^d)$	2.79 ± 1.37	286.3 ± 2.3	-53.6 ± 28.5
298.15	$105.21 \pm 0.07 \ (105.35, {}^a \ 105.57, {}^b \ 105.3, {}^c \ 104.83, {}^d \ 105.2{}^e)$	2.33 ± 0.87	$295.2 \pm 1.1 \ (293^{c})$	9.7 ± 13.9
313.15	$107.02 \pm 0.09 \; (107.0^{e})$	0.85 ± 1.09	309.7 ± 2.8	18.4 ± 33.8
328.15	$108.47 \pm 0.11~(108.1^{e})$	0.60 ± 1.31	325.1 ± 18.9	-47.6 ± 220.9

^a Millero *et al.* (1978). ^b Mishra and Ahluwalia (1984). ^c Jolicoeur *et al.* (1986). ^d Kikuchi *et al.* (1995). ^e Kharakoz *et al.* (1989). ^f Spink and Wadso (1975).

Only one previous investigation of the apparent molar heat capacities of *l*-arginine could be found in the literature (Jolicoeur *et al.*, 1986). Their reported standard state heat capacity of (279 ± 1) J K⁻¹ mol⁻¹ is in very good agreement with our value of (279.5 ± 3.0) J K⁻¹ mol⁻¹.

Turning to standard state data for *l*-proline in water, there have been several volumetric investigations reported in the literature. Standard state volume data for these investigations together with data calculated from the current investigation have been summarized in Figure 1.

Figure 1. A comparison of standard state volume data contained in the literature with those calculated in the present study. (\bullet) present study; (\bigcirc) Kikuchi *et al.* (1995); (\triangle) Iqbal and Ahmed (1993); (+) Jolicoeur *et al.* (1986); (\times) Mishra and Ahluwalia (1984); (\diamond) Millero *et al.* (1978); (\square) Kharakoz (1989).

With the exception of the V_2° value at 308.15 K reported by Iqbal and Ahmed (1993), there is excellent agreement between literature data and those reported in this paper.

There are two previous standard state heat capacities for *I*-proline at 298.15 K reported in the literature. Spink and Wadso's (1975) value of (170.3 ± 3) J K⁻¹ mol⁻¹ was calculated from drop calorimetric measurements, whereas the value of (172.3 ± 0.9) J K⁻¹ mol⁻¹ obtained by Jolicoeur *et al.* (1986) was obtained using a Picker flow microcalorimeter. Our value of $C_{p2}^{\circ} = (177.7 \pm 0.4)$ J K⁻¹ mol⁻¹ is in reasonable agreement with these values, although outside the limits of the combined experimental uncertainties. Our elemental anayses results confirm that we have not introduced a systematic error by failing to consider a change in water of crystallization; therefore, we are unable to fully explain this discrepancy.

Following the patterns in available data displayed by the two previous systems there are several sets of volumetric data for *d*,*l*-methionine in the literature but extremely limited heat capacity data. Indeed, we were able to locate only one previous standard state heat capacity determination (Jolicoeur et al., 1986), and this was for the levo isomer of methionine not the racemic mixture investigated in this study. However, Jolicoeur et al.'s value of (293 \pm 29) J K⁻¹ mol⁻¹ is in good agreement with our reported value of (295.2 \pm 1.1) J K⁻¹ mol⁻¹. With respect to our standard state heat capacity data for *d*,*l*-methionine at 328.15 K, we acknowledge that the reported standard error on this value is large. This situation arises because of the low solubility of *d*,*l*-methionine in water compared to the solubilities of the other investigated systems and as a result of the increased noise in our calorimetric signal at this higher temperature.

With respect to standard state volumes, our values are in excellent agreement with the temperature dependence trends reported by Kharakoz (1989). Kikuchi *et al.* (1995) have recently reported standard state volume data for this system in the temperature range 278.15 K to 318.15 K. Although there is good agreement between this set and ours below 298.15 K, at higher temperatures Kikuchi's data are somewhat lesser in value than the values reported by both Kharakoz (1989) and ourselves. This discrepancy cannot be readily explained.

To further expand our growing data base of standard state properties of aqueous amino acid systems, we have combined the standard state volume data reported in this paper with those previously published in the literature to

Table 5. Estimated Values for A_i Parameters to Eq 8 Which May Be Used To Calculate Standard State Expansibilities (Standard Errors on the A_i Parameters Are Shown in Parentheses)

$A_1/\mathrm{cm}^3 \mathrm{mol}^{-1}$	$A_2/{ m cm}^3 { m mol}^{-1} { m K}^{-1}$	$A_3/{ m cm}^3 { m mol}^{-1} { m K}^{-2}$	temp range/K	ref
123.87 (0.09)	<i>I</i> 0.138 20 (0.011 90)	Arginine -0.001 69 (0.000 48)	288.15-328.15	a–c
82.57 (0.04)	0.086 28 (0.002 81)	<i>l</i> -Proline -0.000 83 (0.000 13)	278.15-328.15	a-e
105.02 (0.20)	<i>d,l</i> - 0.135 81 (0.012 25)	Methionine ^f -0.001 19 (0.000 66)	278.15-328.15	<i>a</i> , d
105.17 (0.12)	<i>d,I</i> -1 0.135 95 (0.009 37)	Methionine ^g -0.001 36 (0.000 45)	278.15-328.15	a-e

^{*a*} Millero *et al.* (1978). ^{*b*} Mishra and Ahluwalia (1984). ^{*c*} Jolicoeur *et al.* (1986). ^{*d*} Kikuchi *et al.* (1995). ^{*e*} Kharakoz *et al.* (1989). ^{*f*} Data for only *d*,*l*-methionine. ^{*g*} Data for *d*,*l*-methionine and *l*-methionine combined.

yield standard state expansibilities, E_2° . These data may be calculated from the first derivative of polynomial equations which model the temperature dependences of standard state volume data (see eq 8). Each data set was

$$V_2^{\circ}(T) = A_1 + A_2(T - 298.15) + A_3(T - 298.15)^2$$
 (8)

assigned unit weighting in our regression analysis procedure. Estimates of the A_i ($i = 1 \rightarrow 3$) constants together with their calculated standard errors are contained in Table 5 together with references to the standard state volume data utilized in each fitting procedure. Iqbal and Ahmed (1993) have reported E_2° based on a linear extrapolation between two standard state volumes obtained at 298.15 K and 308.15 K. Their values of (0.72 and 0.25) cm³ mol⁻¹ K⁻¹ for *l*-arginine and *l*-proline, respectively, are in poor agreement with the values which may be calculated from the data contained in Table 5. This disagreement appears to be the result of Iqbal and Ahmed's unusually large standard state volumes at 308.15 K.

Literature Cited

- Desnoyers, J. E.; DeVissier, C.; Perron, G.; Picker, P. Reexamination of the Heat Capacities Obtained by Flow Microcalorimetry. Recommendation for the Use of a Chemical Standard. J. Solution Chem. 1976, 5, 605–616.
- Duke, M. M.; Hakin, A. W.; McKay, R. M.; Preuss, K. E. The Volumetric and Thermochemical Properties of aqueous solutions of l-valine, l-leucine, and l-isoleucine at 288.15, 298.15, 313.15, and 328.15 K. *Can. J. Chem.* **1994**, *72*, 1489–1494.
- Hakin, A. W.; Duke, M. M.; Klassen S. A.; McKay, R. M.; Preuss, K. E. Apparent Molar Heat Capacities and Volumes of some Aqueous Solutions of Aliphatic Amino Acids at 288.15, 298.15, 313.15, and 328.15 K. Can. J. Chem. 1994a, 72, 362–368.
- Hakin, A. W.; Duke, M. M.; Marty, J. L.; Preuss, K. E. Some Thermodynamic properties of Aqueous Amino Acid Systems at 288.15, 298.15, 313.15, and 328.15 K: Group Additivity Analysis of Standard-state Volumes and Heat Capacities. J. Chem. Soc., Faraday. Trans. 1994b, 90, 2027–2035.
- Hakin, A. W.; Duke, M. M.; Groft, L. L.; Marty, J. L.; Rushfeldt, M. L. Calorimetric Investigations of Amino Acid and Dipeptide Systems from 288.15 to 328.15 K. Can. J. Chem. 1995, 73, 725–734.
- Helgeson, H. C.; Kirkham, D. H.; Flowers, G. C. Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes at High Pressures and Temperatures: IV. Calculation of Activity Coefficients, Osmotic Coefficients, and Apparent Molal and Standard Relative Partial Molal Properties to 600 °C and 5 kb. Am. J. Sci. 1981, 281, 1249–1516.
- Iqbal, M; Ahmed, T. Partial Molar Volumes and Expansibilities of some amino acids in water at 35 °C. Ind. J. Chem. 1993, 32A, 119–123.
- Jolicoeur, C.; Riedl, B.; Desrochers, D.; Lemelin, L. L.; Zamojska, R.; Enea, O. Solvation of Amino Acid Residues in Water and Urea-

Water Mixtures: Volumes and Heat Capacities of 20 Amino Acids in Water and in 8 Molar Urea at 25 °C. J. Solution. Chem. 1986, 15, 109-128.

- Kell, G. S. Precise Representation of Volume Properties of Water at
- One Atmosphere. J. Chem. Eng. Data 1967, 12, 66-69.
 Kell, G. S. In Water A Comprehensive Treatise; Franks, F., Ed.; Plenum Press: New York, 1972; Vol. 1.
- Kharakoz, D. P. Volumetric properties of Proteins and Their Analogs in Diluted Water Solutions. 1. Partial Molar Volumes of Amino Acids
- at 15–55 °C. *Biophys. Chem.* **1989**, *34*, 115–125. Kikuchi, M.; Sakurai, M.; Nitta, K. Partial Molar Volumes and Adiabatic Compressibilities of Amino Acids in Dilute Aqueous Solutions at 5, 15, 25, 35, and 45 °C. J. Chem. Eng. Data 1995, 40, 935 - 942.
- Millero, F. J.; Lo Surdo, A.; Shin, C. The Apparent Molal Volumes and Adiabatic Compressibilities of Aqueous Amino Acids at 25 °C. J. Phys. Chem. 1978, 82, 784-792.
 Mishra, A. K.; Ahluwalia, J. C. Apparent Molal Volumes of Amino Acid. N Activity and Distribution in A wave Schuting, J.
- Acids, N-Acetylamino Acids, and Peptides in Aqueous Solution. J. Phys. Chem. 1984, 88, 86-92.

- Pouchert, C. J.; Campbell, J. R. The Aldrich Library of NMR Spectra Vol. III; Aldrich Chemical Co. Inc.: Milwaukee, WI, 1974.
- Spink, C. H.; Wadso, I. Thermochemistry of Solutions of Biochemical Model Compounds. 4. The Partial Molar Heat Capacities of some Amino Acids in Aqueous Solution. J. Chem. Thermodyn. 1975, 7, 561-572.

Received for review June 4, 1996. Accepted October 9, 1996.[⊗] The author is grateful to the Natural Sciences and Engineering Research Council (NSERC) for operating support. K.E.P. is grateful to NSERC for the award of an Undergraduate Student Research Award.

JE9601927

[®] Abstract published in Advance ACS Abstracts, November 15, 1996.